Molecules with All Triple Bonds: $\mathrm{OCBBCO}, \mathrm{N}_{2} \mathrm{BBN}_{2}$, and $[\mathrm{OBBBBO}]^{2-\dagger}$

Lucas C. Ducati, Nozomi Takagi, and Gernot Frenking*
Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse, D-35043 Marburg, Germany

Received: March 27, 2009; Revised Manuscript Received: June 16, 2009

Abstract

DFT calculations at the BP86/TZ2P level have been carried out for the compounds OCBBCO, $\mathrm{N}_{2} \mathrm{BBN} \mathrm{N}_{2}$, and $[\mathrm{OBBBBO}]^{2-}$. The calculations predict very short distances and large bond dissociation energies for the central $\mathrm{B}-\mathrm{B}$ bonds. The nature of the bonding situation was investigated with an energy decomposition analysis. It shows that the central boron-boron bonds are genuine triple bonds. The π-bonding contributes between $38-40 \%$ to the total orbital interactions of the $\mathrm{B} \equiv \mathrm{B}$ bonds. The compounds can be considered as donor-acceptor complexes $\mathrm{L} \rightarrow \mathrm{BB} \leftarrow \mathrm{L}$ between the central B_{2} moiety in the third $\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$excited state and the ligands $\mathrm{L}=\mathrm{CO}, \mathrm{N}_{2}, \mathrm{BO}^{-}$. The π-backdonation $\mathrm{L} \leftarrow \mathrm{BB} \rightarrow \mathrm{L}$ for $\mathrm{L}=\mathrm{CO}, \mathrm{N}_{2}$ is very strong, which suggests that the latter bonds should also be considered as triple bonds. The π-bonding in $[\mathrm{OB} \leftarrow \mathrm{BB} \rightarrow \mathrm{BO}]^{2-}$ is weaker, which makes the latter bonds borderline cases for triple bonds. The triple-bond character explains the very large bond dissociation energies for the $\mathrm{LB}-\mathrm{BL}$ and $\mathrm{L}-\mathrm{BB}-\mathrm{L}$ bonds.

Introduction

Molecules which have homoatomic triple bonds between atoms of the first octal row have until recently been limited to alkynes $\mathrm{RC} \equiv \mathrm{CR}$ and N_{2}. In 2002, Zhou and co-workers isolated the compound OCBBCO, which was produced by decomposition of laser vaporized boron atoms with CO in an argon matrix at $8 \mathrm{~K} .{ }^{1}$ The authors reported also about CASSCF and B3LYP calculations which showed that the ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$singlet state of linear OCBBCO is the electronic ground state which is $20.5 \mathrm{kcal} \mathrm{mol}^{-1}$ lower in energy than the ${ }^{3} \Sigma_{\mathrm{g}}{ }^{-}$triplet state. The compound OCBBCO was calculated with a very short $\mathrm{B}-\mathrm{B}$ bond (1.453 \AA) and a very large bond dissociation energy $D_{\mathrm{e}}=143.5 \mathrm{kcal}$ mol^{-1}. The bond is much shorter and stronger than the calculated $\mathrm{B}-\mathrm{B}$ double bond in $\mathrm{HB}=\mathrm{BH}\left(1.507 \AA\right.$ and $\left.113.0 \mathrm{kcal} \mathrm{mol}^{-1}\right)$ which has a ${ }^{3} \Sigma_{\mathrm{g}}{ }^{-}$ground state. The calculated bond length and bond dissociation energy and the inspection of the shape of the highest-lying valence orbitals let the authors suggest that OCBBCO "exhibits some boron-born triple bond character." ${ }^{1}$ They also proposed that the Lewis structure of the molecule should be drawn as $\mathrm{O} \equiv \mathrm{C}-\mathrm{B} \equiv \mathrm{B}-\mathrm{C} \equiv \mathrm{O}$.

A very careful theoretical study of the electronic structure of molecules LBBL with $\mathrm{L}=\mathrm{CO}, \mathrm{CS}, \mathrm{N}_{2}, \mathrm{Ar}$, and Kr using $\operatorname{CCSD}(\mathrm{T})$ in conjunction with large basis sets was published by Mavridis et al. in 2004. ${ }^{2}$ They found that the bonding situation in all compounds can be understood in terms of donor-acceptor interactions between two L species that serve as donor ligands and B_{2} as acceptor moiety. The B_{2} fragment in $\mathrm{L} \rightarrow \mathrm{BB} \leftarrow \mathrm{L}$ is in the third excited (3) ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$state that has the valence electron configuration $\left(2 \sigma_{\mathrm{g}}\right)^{2}\left(1 \pi_{\mathrm{u}}\right)^{4}$ where the σ - and the degenerate π-bond are fully occupied yielding a $B \equiv B$ fragment (Figure 1). The bond dissociation energy (BDE) for the $\mathrm{B}-\mathrm{B}$ bond in LBBL was calculated at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{QZ}$ level between $D_{\mathrm{e}}=137.5 \mathrm{kcal} / \mathrm{mol}(\mathrm{L}=\mathrm{CS})$ and $D_{\mathrm{e}}=161.8$ $\mathrm{kcal} / \mathrm{mol}(\mathrm{L}=\mathrm{Kr})$. Very large values were also calculated for the $\mathrm{L}-\mathrm{BB}-\mathrm{L}$ donor-acceptor bonds. The theoretically predicted BDE for dissociation into $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$and 2 ligands L amounts to $226.6 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{L}=\mathrm{CO}$ and $171.5 \mathrm{kcal} / \mathrm{mol}$ for

[^0]
$\mathrm{B}\left({ }^{2} \mathrm{P}\right) \quad \mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{\mathrm{g}}-{ }^{-}\right) \quad \mathrm{B}\left({ }^{2} \mathrm{P}\right)$
$$
\mathrm{B}\left({ }^{4} \mathrm{P}\right) \quad \mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}^{+}\right] \quad \mathrm{B}\left({ }^{4} \mathrm{P}\right)
$$

Figure 1. Schematic representation of the $X^{3} \Sigma_{\mathrm{g}}{ }^{+}$ground state and the third excited (3) ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$state of B_{2}.
$\mathrm{L}=\mathrm{N}_{2} .{ }^{2}$ This raises the question about the strength of the σ and π-contributions to the $\mathrm{L} \rightarrow \mathrm{BB} \leftarrow \mathrm{L}$ donor-acceptor bonds. A remarkable feature of the LBBL molecules is that, according to a Mulliken population analysis, the boron atom carries always a small negative partial charge even when it is bonded to the more electronegative nitrogen atoms in $\mathrm{N}_{2} \mathrm{BBN}_{2}$.

Recently, Li and co-workers observed the boron compound [OBBBBO] ${ }^{-}$in the gas phase using photoelectron spectroscopy. ${ }^{3}$ Quantum chemical calculations using B3LYP, B3PW91, and MP2 were reported for neutral $\left({ }^{3} \Sigma_{\mathrm{g}}{ }^{-}\right)$OBBBBO, anionic $\left({ }^{2} \Pi_{\mathrm{u}}\right)$ [OBBBBO] ${ }^{-}$, and dianionic (${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$) [OBBBBO] ${ }^{2-}$ molecules in the respective ground states. The latter species is isoelectronic with OCBBCO and $\mathrm{N}_{2} \mathrm{BBN}_{2}$. The calculation of the bond orders and inspection of the molecular orbitals let the authors suggest that the bonding situation in $\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right)[\mathrm{OBBBBO}]^{2-}$ is similar to that in OCBBCO and that the dianion has a true $\mathrm{B} \equiv \mathrm{B}$ triple bond. ${ }^{3}$

Several questions remain to be answered about the nature of the bonding in the isoelectronic compounds OCBBCO, $\mathrm{N}_{2} \mathrm{BBN}_{2}$ and $[\mathrm{OBBBBO}]^{2-}$. A central issue concerns the strength of the σ - and π-orbital interactions in the $\mathrm{B} \equiv \mathrm{B}$ triple bond and a comparison with the $\mathrm{C} \equiv \mathrm{C}$ and $\mathrm{N} \equiv \mathrm{N}$ triple bond. In order to address the question, we carried out an energy decomposition analysis (EDA) of the three molecules. We extended the investigation to the donor-acceptor bonds between the B_{2} moieties in the third excited (3) ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$state and the ligands CO , $\mathrm{N}_{2}, \mathrm{BO}^{-}$. The EDA method which was developed by Moro$k^{k u m a}{ }^{4}$ and by Ziegler and Rauk ${ }^{5}$ has been proven to give detailed insight into the nature of the chemical bond in terms of orbital interactions, electrostatic (Coulomb) attraction, and exchange (Pauli) repulsion. ${ }^{6}$ The most important details of the EDA are described in Methods.

Methods

The geometries of the molecules have been optimized using BP86 density functional ${ }^{7}$ in conjunction with TZ2P basis sets. ${ }^{8}$ All structures were verified as minima on the potential energy surface by calculating the Hessian matrices. The calculations were carried out using the ADF program package. ${ }^{9}$

For the calculations of the vibrational frequencies and NBO analyses, we performed BP86 calculations with a def2-TZVPP basis set ${ }^{10}$ using BP86/def2-TZVPP optimized geometries that are very similar to the BP86/TZ2P structures. The latter calculations were performed with GAUSSIAN $03 .{ }^{11}$

The focus of the energy decomposition analysis is the instantaneous interaction energy $\Delta E_{\text {int }}$, which is the energy difference between the molecule and the fragments in the frozen geometry of the compound. The interaction energy can be divided into three main components

$$
\begin{equation*}
\Delta E_{\mathrm{int}}=\Delta E_{\text {elstat }}+\Delta E_{\text {Pauli }}+\Delta E_{\text {orb }} \tag{1}
\end{equation*}
$$

$\Delta E_{\text {elstat }}$ gives the electrostatic interaction energy between the fragments, which are calculated using the frozen electron density distribution of the fragments in the geometry of the molecules. The second term in eq $1, \Delta E_{\text {Pauli, }}$, refers to the repulsive interactions between the fragments, which are caused by the fact that two electrons with the same spin cannot occupy the same region in space. $\Delta E_{\text {Pauli }}$ is calculated by enforcing the Kohn-Sham determinant on the superimposed fragments to obey the Pauli principle by antisymmetrization and renormalization. The stabilizing orbital interaction term, $\Delta E_{\text {orb }}$, is calculated in the final step of the energy partitioning analysis when the Kohn-Sham orbitals relax to their optimal form. This term can be further partitioned into contributions by the orbitals belonging to different irreducible representations of the point group of the interacting system. The interaction energy, $\Delta E_{\text {int }}$, can be used to calculate the bond dissociation energy, $-D_{\mathrm{e}}$, by adding $\Delta E_{\text {prep }}$, which is the energy necessary to promote the fragments from their equilibrium geometry to the geometry in the compounds (eq 2). For technical reasons, the energy decomposition analysis involving open-shell fragments does neglect the spin-polarization in the fragments yielding slightly too stable bonds (in the order of a few kcal/ mol per unpaired electron). The bond energies have been corrected for the spin-polarization error $\Delta E_{\text {corr }}$, which is given in the tables. Further details of the energy partitioning analysis can be found in the literature. ${ }^{12}$

$$
\begin{equation*}
-D_{\mathrm{e}}=\Delta E_{\mathrm{prep}}+\Delta E_{\mathrm{int}} \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{A}-\mathrm{B}} \mathrm{O} \underset{2.05}{\frac{1.164}{2}} \mathrm{C} \underset{1.33}{1.431} \mathrm{~B} \underset{1.90}{1.459} \mathrm{~B}-\mathrm{C}-\mathrm{O} \\
& \mathrm{q}(\mathrm{O})=-0.33 \quad D_{\mathrm{e}}(\mathrm{~B}-\mathrm{B} ; \rightarrow 2 \mathrm{BCO})=149.7 \\
& \begin{array}{ll}
\mathrm{q}(\mathrm{C})=0.45 \\
\mathrm{q}(\mathrm{~B})=-0.12 & D_{\mathrm{e}}\left(\mathrm{~B}-\mathrm{C} ; \rightarrow \mathrm{B}_{2}+2 \mathrm{CO}\right)=261.6^{\mathrm{a}}(155.3)^{\mathrm{b}}
\end{array} \\
& \mathrm{p}_{\mathrm{A}-\mathrm{B}}^{\mathrm{N}_{\mathrm{A}-\mathrm{B}}} \underset{3.30}{1.147} \mathrm{~N}_{1} \underset{1.14}{1.364} \mathrm{~B} \underset{1.82}{1.453} \mathrm{~B}-\mathrm{N}-\mathrm{N} \\
& \mathrm{q}\left(\mathrm{~N}_{2}\right)=0.08 \quad D_{\mathrm{e}}\left(\mathrm{~B}-\mathrm{B} ; \rightarrow 2 \mathrm{BN}_{2}\right)=145.1 \\
& \begin{array}{ll}
\mathrm{q}\left(\mathrm{~N}_{1}\right)=-0.19 & D_{\mathrm{e}}\left(\mathrm{~B}-\mathrm{N} ; \mathrm{B}_{2}+2 \mathrm{~N}_{2}\right)=213.3^{\mathrm{a}}(107.0)^{\mathrm{b}}
\end{array} \\
& \mathrm{p}_{\mathrm{A}-\mathrm{B}} \mathrm{O} \underset{1.60}{\mathrm{r}_{\mathrm{A}}} \mathrm{~B}_{2} \frac{1.601}{{ }_{1.28}} \mathrm{~B}_{1} \frac{1.493}{2.34} \mathrm{~B}-\mathrm{B}-\mathrm{O}^{2-} \\
& \mathrm{q}(\mathrm{O})=-0.95 \quad D_{\mathrm{e}}\left(\mathrm{~B}-\mathrm{B} ; 2 \mathrm{BBO}^{-}\right)=83.0 \\
& \begin{array}{l}
\mathrm{q}\left(\mathrm{~B}_{2}\right)=0.67 \\
\mathrm{q}\left(\mathrm{~B}_{1}\right)=-0.72 \quad D_{\mathrm{e}}\left(\mathrm{~B}_{1}-\mathrm{B}_{2} ; \rightarrow \mathrm{B}_{2}+2 \mathrm{BO}^{-}\right)=318.5^{\mathrm{a}}(145.4)^{\mathrm{b}}
\end{array}
\end{aligned}
$$

Figure 2. Optimized geometries of $\mathrm{OCBBCO}, \mathrm{N}_{2} \mathrm{BBN}_{2}$ and [OBBB-$\mathrm{BO}]^{2-}$ and the diatomic species $\mathrm{CO}, \mathrm{N}_{2}, \mathrm{BO}^{-}$and $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}^{+}\right]$at $\mathrm{BP} 86 /$ TZ2P. Calculated bond length $\mathrm{r}_{\mathrm{A}-\mathrm{B}}[\AA]$, Wiberg bond orders $\mathrm{P}_{\mathrm{A}-\mathrm{B}}$, atomic partial charges $q(A)$ and bond dissociation energies $D_{\mathrm{e}}[\mathrm{kcal} / \mathrm{mol}]$.
${ }^{a}$ Dissociation energy with respect to the electronic reference state of B_{2}, reaction R1. ${ }^{b}$ Dissociation energy with respect to the electronic ground state of B_{2}, reaction R 2 .

Results and Discussion

Figure 2 shows the theoretically predicted bond lengths and bond dissociation energies of the calculated molecules at BP86/ TZ2P. The atomic partial charges q and the Wiberg bond orders are also given.

The calculated $\mathrm{B}-\mathrm{B}$ bond lengths of OCBBCO (1.459 \AA), $\mathrm{N}_{2} \mathrm{BBN}_{2}(1.453 \AA)$, and $[\mathrm{OBBBBO}]^{2-}(1.493 \AA)$ are significantly shorter than the experimental values of typical $\mathrm{B}-\mathrm{B}$ double bonds which are between $1.57-1.59 \AA$). ${ }^{13}$ The $B-B$ distances in the three compounds LBBL are also clearly shorter than the theoretical $B-B$ single bond in $\mathrm{H}_{2} \mathrm{~B}-\mathrm{BH}_{2}(1.623 \AA)$ and the double bond in $\mathrm{HB}=\mathrm{BH}(1.526 \AA) .{ }^{14}$ Our theoretically predicted $\mathrm{B}-\mathrm{B}$ distances at BP86/TZ2P for OCBBCO and $\mathrm{N}_{2} \mathrm{BBN}_{2}$ are in good agreement with the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{QZ}$ values of Mavridis et al. who reported the values 1.439 and $1.460 \AA$ for the two molecules, respectively. ${ }^{2}$ The BP86/TZ2P value for $[\mathrm{OBBBBO}]^{2-}$ is slightly shorter than the MP2/aug-cc-pVTZ value ($1.504 \AA$ A), which was given by Li and co-workers. ${ }^{3}$ Figure 2 gives also the calculated equilibrium distances of the free ligands L in the singlet ground state and B_{2} in the (3) ${ }^{1} \Sigma_{\mathrm{g}}{ }^{+}$excited state. It becomes obvious that the bond lengths in the ligands L and in $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$become longer in the compounds LBBL.

The $\mathrm{B}-\mathrm{B}$ bond dissociation energies D_{e} of OCBBCO (149.7 $\mathrm{kcal} / \mathrm{mol})$ and $\mathrm{N}_{2} \mathrm{BBN}_{2}(145.1 \mathrm{kcal} / \mathrm{mol})$ at $\mathrm{BP} 86 / \mathrm{TZ} 2 \mathrm{P}$ are in good agreement with previous data at the $\operatorname{CCSD}(\mathrm{T}) / \mathrm{QZ}$ level, which are 146.3 and $144.1 \mathrm{kcal} \mathrm{mol}^{-1}$, respectively. ${ }^{2}$ Our calculations suggest that $[\mathrm{OBBBBO}]^{2-}$ has a significatly smaller BDE of $D_{\mathrm{e}}=83.0 \mathrm{kcal} / \mathrm{mol}$ than the neutral compounds LBBL. We want to point out that there is no correlation between the bond orders P_{BB}, the bond lengths r_{BB} and the BDE of the latter compounds. ${ }^{19}$ [OBBBBO] ${ }^{2-}$ has a only a slightly longer $\mathrm{B}-\mathrm{B}$ bond than OCBBCO and $\mathrm{N}_{2} \mathrm{BBN}_{2}$ but the BDE of the dianion is much less while the bond order is much higher $\left(\mathrm{P}_{\mathrm{BB}}=2.34\right)$ than in $\operatorname{OCBBCO}\left(\mathrm{P}_{\mathrm{BB}}=1.90\right)$ and $\mathrm{N}_{2} \mathrm{BBN}_{2}\left(\mathrm{P}_{\mathrm{BB}}=1.82\right)$. The

EDA results given below explain the surprising data. Note that the NBO analysis gives negative partial charges for the central boron atoms in $[\mathrm{OBBBBO}]^{2-}\left(\mathrm{q}_{\mathrm{B} 1}=-0.72\right)$ and $\operatorname{OCBBCO}\left(\mathrm{q}_{\mathrm{B}}\right.$ $=-0.12$) but a small positive charge is calculated for $\mathrm{N}_{2} \mathrm{BBN}_{2}$ $\left(\mathrm{q}_{\mathrm{B}}=0.11\right)$. It is remarkable that the central boron atoms in [OBBBBO] ${ }^{2-}$ carry a large negative charge while the boron atoms of the terminal donor moieties carry a large positive charge of $\mathrm{q}_{\mathrm{B} 2}=0.67$.
Figure 2 gives also the BDEs for the $\mathrm{L} \rightarrow \mathrm{BB} \leftarrow \mathrm{L}$ donor - acceptor bonds. The calculated D_{e} values for the dissocation into the fragments L in the electronic reference states are very large (reaction 1) $\left({ }^{1} \Sigma_{\mathrm{g}}{ }^{+}\right.$when $\left.\mathrm{Y}=\mathrm{N}_{2}\right)$

$$
\begin{equation*}
\mathrm{LBBL} \rightarrow \mathrm{~B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}^{+}\right]+2 \mathrm{~L}\left({ }^{1} \Sigma^{+}\right) \tag{R1}
\end{equation*}
$$

The theoretically predicted reaction energies for reaction 1 suggest that the average BDE for one ligand is $130.8 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{L}=\mathrm{CO}, 106.7 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{L}=\mathrm{N}_{2}$, and $159.3 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{L}=\mathrm{BO}^{-}$. This is much higher than the D_{e} values of typical donor-acceptor bonds of main-group Lewis bases that have values of less than $60 \mathrm{kcal} / \mathrm{mol} .{ }^{15}$ The dissociation of LBBL into the fragments in the electronic ground states is still rather high (reaction 2)

$$
\begin{equation*}
\mathrm{LBBL} \rightarrow \mathrm{~B}_{2}\left[\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}\right]+2 \mathrm{~L}\left({ }^{1} \Sigma^{+}\right) \tag{R2}
\end{equation*}
$$

The calculated values given in Figure 2 indicate that the average dissociation energy yielding the $\mathrm{B}_{2}\left[\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}\right]$ground state is $77.7 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{L}=\mathrm{CO}, 53.5 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{L}=\mathrm{N}_{2}$, and $72.7 \mathrm{kcal} / \mathrm{mol}$ for $\mathrm{L}=\mathrm{BO}^{-}$.

The very large BDEs for reaction 1 let it seem possible that the $\mathrm{L} \rightarrow \mathrm{BB} \leftarrow \mathrm{L}$ donor - acceptor bonds have significant contributions from π-bonding. Figure 3 shows the complete sets of occupied valence orbitals of LBBL. The HOMO of all three molecules is the degenerate $2 \pi_{\mathrm{u}} \mathrm{MO}$, which is the bonding contributions of the $\mathrm{p}(\pi)$ AOs of the central B_{2} moiety but it has also large coefficients from the $\mathrm{p}(\pi)$ AOs of the donor atoms of L. The shape of the orbitals clearly indicates that there is substantial π-bonding from B_{2} to the ligands $L \leftarrow B B \rightarrow L$. There are two more degenerate valence MOs in LBBL which have π-symmetry. They are the $1 \pi_{\mathrm{g}} \mathrm{MO}$ and the $1 \pi_{\mathrm{u}}$ MO that are very close in energy (Figure 3). The latter orbitals are the plus and minus combinations of the π-bonding MOs of the ligand fragments L. The remaining seven valence orbitals have σ-symmetry. The strength of the bonding interactions that comes from the σ - and π-orbital to the $\mathrm{LB}-\mathrm{BL}$ and $\mathrm{L}-\mathrm{BB}-\mathrm{L}$ bonding has been estimated with the EDA calculations. The results are given in Table 1.
The first three first entries of the EDA results for LBBL reveal the nature of the $\mathrm{LB}-\mathrm{BL}$ bonds. The total interaction energies $\Delta E_{\text {int }}$ are only slightly less than the D_{e} values because the preparation energies $\Delta E_{\text {prep }}$ are very small. The breakdown of the $\Delta E_{\text {int }}$ values into the three energy contributions suggests that the central boron-boron bond in LBBL has a higher covalent than electrostatic character. The attraction which comes from the orbital term $\Delta E_{\text {orb }}$ is stronger than the electrostatic attraction $\Delta E_{\text {elstat }}$ (Table 1). The EDA data indicate that there is a significant contribution of the π-orbital interactions to $\Delta E_{\text {orb }}$. The calculations show that ΔE_{π} amounts to $37.5-39.7 \%$ of the total orbital interactions. This is less than the ΔE_{π} contribution to the orbital interactions in free $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$, which has a genuine triple bond, where the π-bonding is nearly as strong as
σ-bonding (Table 2). The EDA results for $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$reveal a very unusual bonding situation which needs to be explained.

The EDA calculations suggest that the electrostatic interactions in $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$are strongly repulsive by $64.4 \mathrm{kcal} / \mathrm{mol}$. The Coulomb interaction in most diatomic molecules is strongly attractive like in N_{2} (Table 2). A detailed analysis of the electrostatic and orbital interactions in diatomic molecules shows ${ }^{16}$ that the electrostatic repulsion can be explained with the fact that the $2 \mathrm{p}(\sigma) \mathrm{AOs}$ of the boron atoms that are the interacting fragments in $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$are empty. A previous EDA analysis of homodiatomic molecules $\mathrm{E}_{2}\left(\mathrm{E}=\mathrm{Li}-\mathrm{F}_{2}\right)$ showed that occupied π-orbitals have repulsive contribution to $\Delta E_{\text {elstat }}$. It was also shown that occupied σ-orbitals that come from 2 s orbitals are weakly attractive while occupied σ-orbitals that come from $\mathrm{p}(\sigma)$ orbitals have a large stabilizing contribution to $\Delta E_{\text {elstat }}{ }^{16}$ There is only one occupied valence orbital in the latter molecule that has σ-symmetry while there are two occupied orbitals which have π-symmetry. This explains the unusual finding that the electrostatic term in $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$is repulsive.

The interactions of $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}^{+}\right]$with the ligands L in OCB$\mathrm{BCO}, \mathrm{N}_{2} \mathrm{BBN}_{2}$, and $[\mathrm{OBBBBO}]^{2-}$ yield a significant change in the nature of the boron-boron bond. The EDA calculations suggest that the electrostatic term of the LB-BL bonds is now strongly attractive (Table 1). This can be explained with the σ-donation of the ligands to the B_{2} moiety $\mathrm{L} \rightarrow \mathrm{BB} \leftarrow \mathrm{L}$ that yields a significant occupation of the vacant $2 \sigma_{\mathrm{g}}{ }^{+}$orbital of B_{2} (Figure 1). The electrostatic stabilization due to the occupation of the σ-orbital is compensated by a large increase in the Pauli repulsion. Table 1 shows that the $\Delta E_{\text {Pauli }}$ values for the $\mathrm{LB}-\mathrm{BL}$ interactions are much higher than for $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$(Table 2).

The π-orbital interactions in $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$yield 47.7% of $\Delta E_{\text {orb }}$, which is much higher than the relative contribution of ΔE_{π} in $\mathrm{N}_{2}(34.4 \%)$. However, since the percentage contribution of ΔE_{π} in the latter molecule, which has a triple bond, is even slightly less than in the boron-boron bonds of OCBBCO, $\mathrm{N}_{2} \mathrm{BBN}_{2}$, and [OBBBBO] ${ }^{2-}$, we conclude from the EDA results that the molecules have genuine boron-boron triple bonds even when the relative contributions of ΔE_{π} to the orbital interactions are smaller than in $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$. Our assignment of a boron-boron triple bond is in agreement with previous analyses of the electronic structures of LBBL. ${ }^{1-3}$

The calculated interaction energies $\Delta E_{\text {int }}$ and the BDE show (Table 1) that the boron-boron triple bond in $[\mathrm{OBBBBO}]^{2-}$ is significantly weaker than in OCBBCO and $\mathrm{N}_{2} \mathrm{BBN}_{2}$. Intuitively, this might be explained with the release of Coulomb repulsion between the negatively charged fragments $[\mathrm{BBO}]^{-}$. The EDA data show that the electrostatic interaction between the latter species at the equilibrium distance of $[\mathrm{OBBBBO}]^{2-}$ is strongly attractive with $\Delta E_{\text {elstat }}=-71.0 \mathrm{kcal} / \mathrm{mol}$. The electrostatic interactions in molecules have been analyzed in a very detailed study, which shows that the partial charges of the interacting fragments should not be used as indicator for the Coulomb interactions. ${ }^{16}$ This is because the electronic charge in a molecule has an anisotropic distribution. Partial charges do not give any information about the spacial distribution of the electronic charge that plays a crucial role for the Coulombic interaction. The EDA data suggest that the electrostatic attraction in $[\mathrm{OBB}-\mathrm{BBO}]^{2-}$ is weaker than in OCBBCO and $\mathrm{N}_{2} \mathrm{BBN}_{2}$ while the attractive orbital interactions $\Delta E_{\text {orb }}$ in the latter compounds are less than in the dianion. This explains why the bond order of the central $\mathrm{B} \equiv \mathrm{B}$ triple bond in $[\mathrm{OBB}-\mathrm{BBO}]^{2-}$ is larger $\left(P_{\mathrm{BB}}=2.34\right)$ than in OCBBCO ($P_{\mathrm{BB}}=1.90$) and $\mathrm{N}_{2} \mathrm{BBN}_{2}\left(P_{\mathrm{BB}}=1.82\right)$. The strength of the $\mathrm{B} \equiv \mathrm{B}$ triple bonds in LBBL is not determined by the orbital interactions alone but by the sum of the three

Figure 3. Plot of the occupied valence orbitals of OCBBCO, $\mathrm{N}_{2} \mathrm{BBN}_{2}$, and [OBBBBO] ${ }^{2-}$.
contributions $\Delta E_{\text {orb }}, \Delta E_{\text {elstat }}$, and $\Delta E_{\text {Pauli }}$. Table 1 shows that the main reason for the weaker $\mathrm{B} \equiv \mathrm{B}$ triple bond in $[\mathrm{OBB}-\mathrm{BBO}]^{2-}$ is the much stronger Pauli repulsion. The calculated value for $[\mathrm{OBB}-\mathrm{BBO}]^{2-}$ is significantly higher $\left(\Delta E_{\text {Pauli }}=144.9 \mathrm{kcal} /\right.$ $\mathrm{mol})$ than for $\operatorname{OCBBCO}\left(\Delta E_{\text {Pauli }}=103.9 \mathrm{kcal} / \mathrm{mol}\right)$ and $\mathrm{N}_{2} \mathrm{BBN}_{2}$
$\left(\Delta E_{\text {Pauli }}=93.6 \mathrm{kcal} / \mathrm{mol}\right)$. This is because the exchange (Pauli) repulsion between two electrons that have the same spin is much larger at short distances than Coulombic repulsion. ${ }^{16}$

One referee pointed out that the longer and weaker $\mathrm{B} \equiv \mathrm{B}$ triple bond in [OBB-BBO] ${ }^{2-}$ may be due to the weaker Coulombic

TABLE 1: EDA Results of $\mathrm{L}-\mathrm{B} \equiv \mathrm{B}-\mathrm{L}$ at the $\mathrm{BP} 86 /$ TZ2P Level ${ }^{a}$

	$\mathrm{OCB} \equiv \mathrm{BCO}$	$\mathrm{N}_{2} \mathrm{~B} \equiv \mathrm{BN}_{2}$	$[\mathrm{OBB} \equiv \mathrm{BBO}]^{2-}$	$\mathrm{OC}-\mathrm{BB}-\mathrm{CO}$	$\mathrm{N}_{2}-\mathrm{BB}-\mathrm{N}_{2}$	$[\mathrm{OB}-\mathrm{BB}-\mathrm{BO}]^{2-}$
interacting fragments	$2 \mathrm{BCO}\left({ }^{4} \Sigma^{-}\right)$	$2 \mathrm{BNN}\left({ }^{4} \Sigma^{-}\right)$	$2[\mathrm{BBO}]^{-}\left({ }^{4} \Sigma^{-}\right)$	$\begin{gathered} \mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}^{+}\right]+2 \mathrm{CO} \\ \left({ }^{+} \Sigma^{+}\right) \end{gathered}$	$\begin{aligned} & \mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}^{+}\right]+2 \mathrm{~N}_{2} \\ & \left({ }^{1} \Sigma_{\mathrm{g}}^{+}\right) \end{aligned}$	$\underset{\left({ }^{1} \Sigma^{+}\right)}{\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}^{+}\right]+2 \mathrm{BO}^{-}}$
$\Delta E_{\text {int }}$	-155.2	-155.3	-89.7	-267.7	-223.1	-326.1
$\Delta E_{\text {Pauli }}$	103.9	93.6	144.9	203.6	221.3	195.0
$\Delta E_{\text {elstat }}{ }^{\text {b }}$	-108.7 (42.0\%)	-97.4 (39.1\%)	-71.0 (30.2\%)	-119.1 (25.3\%)	-94.5 (21.3\%)	-209.0 (40.1\%)
$\Delta E_{\text {orb }}{ }^{\text {b }}$	-150.4 (58.0\%)	-151.5 (60.9\%)	-163.6 (69.8\%)	-352.2 (74.7\%)	-349.9 (78.7\%)	-312.2 (59.9\%)
$\Delta E \sigma^{c}$	-92.1 (61.2\%)	-91.3 (60.3\%)	-102.2 (62.5\%)	-193.7 (55.0\%)	-168.3 (48.1\%)	-233.1 (74.7\%)
$\Delta E \pi^{c}$	-58.3 (38.8\%)	-60.2 (39.7\%)	-61.4 (37.5\%)	-158.5 (45.0\%)	-181.6 (51.9\%)	-79.1 (25.3\%)
$\Delta E_{\text {prep }}$	5.5	10.2	6.7	6.1 (112.4) ${ }^{d}$	$9.8(123.1)^{d}$	7.6 (180.7) ${ }^{\text {d }}$
$\Delta E\left(=-D_{\text {e }}\right)$	149.7	145.1	83.0	$261.6(155.3)^{d}$	213.3 (107.0) ${ }^{d}$	318.5 (145.4) ${ }^{\text {d }}$

${ }^{a}$ Energy values in kcal mol ${ }^{-1} .{ }^{b}$ The percentage values in parentheses give the contribution to total attractive interactions $\Delta E_{\text {orb }}+\Delta E_{\text {elstat }}$. ${ }^{c}$ The percentage values in parentheses give the contribution to total orbital interactions $\Delta E_{\text {orb. }}{ }^{d}$ Energy with respect to $\mathrm{B}_{2}\left(\mathrm{X}^{3} \Sigma_{g}{ }^{-}\right)$ground state.

TABLE 2: Energy Decomposition Analysis Results of \mathbf{B}_{2} and \mathbf{N}_{2} Molecules at BP86/TZ2P Level ${ }^{a}$

	$\mathrm{N} \equiv \mathrm{N}$	$\mathrm{B} \equiv \mathrm{B}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$
interacting fragments	$2 \mathrm{~N}\left({ }^{4} \Sigma^{-}\right)$	$2 \mathrm{~B}\left({ }^{4} \Sigma^{-}\right)$
$\Delta E_{\text {int }}$	-240.3	-127.7
$\Delta E_{\text {Pauli }}{ }^{+}$		
$\Delta E_{\text {elstat }}{ }^{b}$	802.4	13.5
$\Delta E_{\text {orb }}{ }^{b}$	$-312.9(30.0 \%)$	$64.4(0.0 \%)$
$\Delta E \sigma^{c}$	$-729.8(70.0 \%)$	$-205.6(100.0 \%)$
$\Delta E \pi^{c}$	$-478.8(65.6 \%)$	$-107.6(52.3 \%)$
$\Delta E_{\text {prep }}$	$-251.0(34.4 \%)$	$-98.0(47.7 \%)$
$\Delta E(=-D e)$	4.2^{e}	$\left.3.3^{e}(100.4)^{d}\right)$
	236.1	$124.4(27.4)^{d}$

${ }^{a}$ Energy values in kcal mol^{-1}. ${ }^{b}$ The percentage values in parentheses give the contribution to total attractive interactions $\Delta E_{\text {orb }}+\Delta E_{\text {elstat }}{ }^{c}$ The percentage values in parentheses give the contribution to total orbital interactions $\Delta E_{\text {orb }}$. ${ }^{d}$ Energy with respect to $\mathrm{B}\left({ }^{2} \mathrm{P}\right)$ ground state. ${ }^{e}$ Correction for spin polarization.
attraction which could be related to the large negative charges at the central boron atoms $\mathrm{q}\left(\mathrm{B}_{1}\right)=-0.72$ (Figure 2). The assumption is not correct. EDA calculations of $[\mathrm{OBB}-\mathrm{BBO}]^{2-}$ where the central boron-boron bond was frozen at shorter distances than the equilibrium value show that the electrostatic attraction becomes stronger even at $\mathrm{r}(\mathrm{B} \equiv \mathrm{B})=1.200 \AA$ where $\Delta E_{\text {elstat }}=-102.1 \mathrm{kcal} / \mathrm{mol}$. The reason for the longer equilibrium distance is the steep increase in the Pauli repulsion term when the boron-boron bond becomes shorter.

Table 1 gives also the EDA result for the $\mathrm{L}-\mathrm{BB}-\mathrm{L}$ bonds. Calculations have been performed for the simultaneous interactions between both ligands L and the central B_{2}. The data show that the average interaction energies for the $\mathrm{L}-\mathrm{BB}-\mathrm{L}$ systems are very large. The calculated values for one $\mathrm{B}-\mathrm{L}$ bond are $\Delta E_{\text {int }}=-133.9 \mathrm{kcal} / \mathrm{mol}$ for OCBBCO, $\Delta E_{\text {int }}=-111.6 \mathrm{kcal} /$ mol for $\mathrm{N}_{2} \mathrm{BBN}_{2}$, and $\Delta E_{\text {int }}=-163.1 \mathrm{kcal} / \mathrm{mol}$ for $[\mathrm{OBB}-$ $\mathrm{BBO}]^{2-}$. The largest contributions to the interaction energy come from the orbital term $\Delta E_{\text {orb }}$. Note that the breakdown of the latter term into σ - and π-orbitals shows that the π-backdonation $\mathrm{L} \leftarrow \mathrm{BB} \rightarrow \mathrm{L}$ for $\mathrm{L}=\mathrm{CO}$ is very large (45.0% of $\Delta E_{\text {orb }}$) and even larger for $\mathrm{L}=\mathrm{N}_{2}\left(51.9 \%\right.$ of $\left.\Delta E_{\text {orb }}\right)$ where it is even bigger than the σ-donation. It is interesting to note that N_{2} is a stronger π-acceptor for $\mathrm{B}_{2}\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$than CO. The negatively charged ligand $[\mathrm{BO}]^{-}$is as expected a weaker π-acceptor than CO and N_{2}. Table 1 shows that the π-backdonation $\mathrm{L} \leftarrow \mathrm{BB} \rightarrow \mathrm{L}$ for $\mathrm{L}=$ BO^{-}is only 25.3% of $\Delta E_{\text {orb }}$. The much stronger total interaction energy $\Delta E_{\text {int }}=-326.1 \mathrm{kcal} / \mathrm{mol}$ for $[\mathrm{OB}-\mathrm{BB}-\mathrm{BO}]^{2-}$ compared with the neutral systems $\mathrm{L}-\mathrm{BB}-\mathrm{L}$ comes mainly from the significantly larger electrostatic attraction and to a smaller extent from the weaker Pauli repulsion. This holds also for the stronger $\mathrm{OC}-\mathrm{BB}-\mathrm{CO}$ bonds compared with $\mathrm{N}_{2}-\mathrm{BB}-\mathrm{N}_{2}$. The $\Delta E_{\text {int }}$ value of the former compound is larger and the $\Delta E_{\text {Pauli }}$ value is smaller than for the latter while the $\Delta E_{\text {orb }}$ values are

TABLE 3: Calculated IR and Raman Frequencies (cm^{-1}) and Their Intensities ($\mathbf{k m} / \mathrm{mol}$ and \AA^{4} / amu, Respectively) at BP86/def2-TZVPP//BP86/def2-TZVPP Level; Experimental Values Are Given in Parentheses ${ }^{a}$

frequency	vibrational mode intensity (IR)	intensity (Raman)
$\mathrm{O} \equiv \mathrm{C}-\mathrm{B} \equiv \mathrm{B}-\mathrm{C} \equiv \mathrm{O}$		
217.4	$\mathrm{B}-\mathrm{B} \equiv \mathrm{B}$ bend $^{\text {b }}$	12.0
481.5	$B-B$ stretch	70.5
478.2	B-C stretch	72.1
509.6	$\mathrm{O} \equiv \mathrm{C}-\mathrm{B}$ bend $^{\text {b }}$	0.4
514.6 (517.1)	$\mathrm{O} \equiv \mathrm{C}-\mathrm{B}$ bend $\quad 10.7$	
1069.0 (1086.1)	$\mathrm{B}-\mathrm{C}$ stretch $\quad 26.8$	
1658.3	$B \equiv \mathrm{~B}$ stretch	0.6
2042.0 (2014.2)	$\mathrm{C} \equiv \mathrm{O}$ stretch 2621.5	
2093.3	$\mathrm{C} \equiv \mathrm{O}$ stretch	200.5
$\mathrm{N} \equiv \mathrm{N}-\mathrm{B} \equiv \mathrm{B}-\mathrm{N} \equiv \mathrm{N}$		
266.5	$\mathrm{N}-\mathrm{B} \equiv \mathrm{B}$ bend $^{\text {b }}$	2.6
487.6	$\mathrm{N} \equiv \mathrm{N}-\mathrm{B}$ bend ${ }^{\text {b }}$	8.3
496.5	$\mathrm{N} \equiv \mathrm{N}-\mathrm{B}$ bend $^{\text {b }}$ (1.4	
503.7	$\mathrm{B}-\mathrm{N}$ stretch	70.3
1153.0	$\mathrm{B}-\mathrm{N}$ stretch $\quad 33.4$	
1704.2	$B \equiv \mathrm{~B}$ stretch	14.8
2018.0	$\mathrm{N} \equiv \mathrm{N}$ stretch	419.5
2033.4	$\mathrm{N} \equiv \mathrm{N}$ stretch $\quad 1485.1$	
$[O \equiv B-B \equiv B-B \equiv O]^{2-}$		
233.4	$\mathrm{B}-\mathrm{B} \equiv \mathrm{B}$ bend ${ }^{\text {b }}$	64.6
403.3	$B-B$ stretch	91.2
478.6	$\mathrm{O} \equiv \mathrm{B}-\mathrm{B}$ bend ${ }^{\text {b }}$	3.6
487.7	$\mathrm{O} \equiv \mathrm{B}-\mathrm{B}$ bend $^{\text {b }}$ (${ }^{\text {a }}$	
830.8	$\mathrm{B}-\mathrm{B}$ stretch $\quad 0.6$	
1453.9	$B \equiv \mathrm{~B}$ stretch	35.5
1682.3	$\mathrm{O} \equiv \mathrm{B}$ stretch $\quad 2010.4$	
1737.5	$\mathrm{O} \equiv \mathrm{B}$ stretch	254.4

not very different from each other. This shows that the differences between bond strengths are sometimes not related to differences between the strengths of orbital interactions. ${ }^{17}$ The comparatively small contribution of the π-orbital interaction to the $\mathrm{B}_{1}-\mathrm{B}_{2}$ bond in $[\mathrm{OB}-\mathrm{BB}-\mathrm{BO}]^{2-}$ show that it is a borderline case for calling it a triple bond.

The calculated values for the σ - and π-orbital interactions of $\mathrm{L}-\mathrm{BB}-\mathrm{L}$ that indicate the relative strength of σ-donor and π-acceptor strength of L may be compared with the overall charge distribution of the B_{2} and L_{2} moieties. Figure 2 shows that the B_{2} fragment in $\mathrm{N}_{2} \mathrm{BBN}_{2}$ donates 0.22 e to the N_{2} ligands while the B_{2} moieties in OCBBCO and [OBBBBO] ${ }^{2-}$ accept electronic charge from the ligands. The net charge donation $\mathrm{L} \rightarrow \mathrm{BB} \leftarrow \mathrm{L}$ is 0.24 e for $\mathrm{L}=\mathrm{CO}$ and 0.56 for $\mathrm{L}=\mathrm{BO}^{-}$. The calculated charge distribution and the strength of the σ - and π-orbital interactions thus suggest that the σ-donor strength has the order $\mathrm{BO}^{-}>\mathrm{CO}>\mathrm{N}_{2}$ while the π-acceptor strength has the trend $\mathrm{N}_{2}>\mathrm{CO}>\mathrm{BO}^{-}$. The same conclusion was reached for the ligands BO^{-}and CO in a paper by Ehlers et al. ${ }^{20}$

We calculated the vibrational spectra of the three compounds. The results are given in Table 3. The theoretical infrared and Raman harmonic frequencies at BP86/def2-TZVPP//BP86/def2TZVPP are in good agreement with the experimental results for OCBBCO. The calculated frequency for the $\mathrm{B} \equiv \mathrm{B}$ stretching mode of the LBBL compounds is significantly higher than the experimental stretching mode for diatomic B_{2} in its $\mathrm{X}^{3} \Sigma_{\mathrm{g}}{ }^{-}$ ground state $\left(1051.3 \mathrm{~cm}^{-1}\right) .{ }^{18}$ Note that the calculated $B \equiv B$ stretching frequencies of the neutral compounds OCBBCO ($1658.3 \mathrm{~cm}^{-1}$) and $\mathrm{N}_{2} \mathrm{BBN}_{2}\left(1704.2 \mathrm{~cm}^{-1}\right.$) are significantly larger than for $[\mathrm{OBBBBO}]^{2-}\left(1453.9 \mathrm{~cm}^{-1}\right)$, which is in agreement with the much weaker $\mathrm{B}-\mathrm{B}$ interaction energy of the latter molecule (Figure 1).

Summary and Conclusion

The results of this work can be summarized as follows. The energy decomposition analysis of the compounds OCBBCO, $\mathrm{N}_{2} \mathrm{BBN}_{2}$, and $[\mathrm{OBBBBO}]^{2-}$ shows that the central boron-boron bonds are genuine triple bonds. The π-bonding contributes between $38-40 \%$ to the total orbital interactions of the $B \equiv B$ bonds. The compounds can be considered as donor-acceptor complexes $\mathrm{L} \rightarrow \mathrm{BB} \leftarrow \mathrm{L}$ between the central B_{2} moiety in the third $\left[(3)^{1} \Sigma_{\mathrm{g}}{ }^{+}\right]$excited state and the ligands $\mathrm{L}=\mathrm{CO}, \mathrm{N}_{2}, \mathrm{BO}^{-}$. The π-backdonation $\mathrm{L} \leftarrow \mathrm{BB} \rightarrow \mathrm{L}$ for $\mathrm{L}=\mathrm{CO}, \mathrm{N}_{2}$ is very strong, which suggests that the latter bonds should also be considered as triple bonds. The π-bonding in $[\mathrm{OB} \leftarrow \mathrm{BB} \rightarrow$ $\mathrm{BO}]^{2-}$ is weaker, which makes the latter bonds borderline cases for triple bonds. The triple-bond character explains the very large bond dissociation energies for the $\mathrm{LB}-\mathrm{BL}$ and $\mathrm{L}-\mathrm{BB}-\mathrm{L}$ bonds.

Acknowledgment. L.C.D. is grateful to FAPESP (Grant 06/ 02783-9) for a scholarship. This work was supported by the Deutsche Forschungsgemeinschaft. Excellent service by the computer center (HRZ) of the Philipps-Universität Marburg is gratefully acknowledged.

References and Notes

(1) Zhou, M.; Tsumori, N.; Li, Z.; Fan, K.; Andrews, L.; Xu, Q. J. Am. Chem. Soc. 2002, 124, 12936.
(2) Papakondylis, A.; Miliordos, E.; Mavridis, A. J. Phys. Chem. A 2004, 108, 4335.
(3) Li, S.; Zhai, H.; Wang, L. J. Am. Chem. Soc. 2008, 130, 2573.
(4) Morokuma, K. J. Chem. Phys. 1971, 55, 1236.
(5) Ziegler, T.; Rauk, A. Theor. Chim. Acta 1977, 46, 1.
(6) Lein, M.; Frenking, G. In Theory and Applications of Computational Chemistry: The First 40 Years; Dykstra, C. E., Frenking, G., Kim, K. S., Scuseria, G. E., Eds.; Elsevier: Amsterdam, 2005; p 291.
(7) (a) Becke, A. D. Phys. Rev. A 1998, 38, 3098. (b) Perdew, J. P. Phys. Rev. B 1986, 33, 8822.
(8) Snijders, J. G.; Baerends, E. J.; Vernoojs, P. At. Data Nucl. Data Tables 1982, 26, 483.
(9) Baerends, E. J.; Autschbach, J.; Berces, A.; Bickelhaupt, F. M.; C. Bo, C.; Boerrigter, P. M.; Cavallo, L.; Chong, D. P.; Deng, L.; Dickson, R. M.; Ellis, D. E.; van Faassen, M.; Fischer, L.; Fan, T. H.; Fonseca Guerra, C.; van Gisbergen, S. J. A.; Groeneveld, J. A.; Gritsenko, O. V.; Grüning, M.; Harris, F. E. ; van den Hoek, P.; Jacob, C. R.; Jacobsen, H.; Jensen, L.; van Kessel, G.; Kootstra, F.; van Lenthe, E.; McCormack, D. A.; Michalak, A.; Neugebauer, J.; Osinga, V. P.; Patchkovskii, S.; Philipsen, P. H. T.; Post, D.; Pye, C. C.; Ravenek, W.; Ros, P.; Schipper, P. R. T.; Schreckenbach, G.; Snijders, J. G.; Solà, M.; Swart, M.; Swerhone, D.; te Velde, G.; Vernooijs, P.; Versluis, L.; Visscher, L. Visser, O.; Wang, F.; Wesolowski, T. A.; van Wezenbeek, E.; Wiesenekker, G.; Wolff, S.; Woo, T.; Yakovlev, A.; Ziegler, T. ADF, 2006.01, SCM, Theoretical Chemistry, Vrije Universiteit: Amsterdam, The Netherlands. URL: http://www.scm.com.
(10) Weigend, F.; Ahlrichs, R. Phys. Chem. Chem. Phys. 2005, 7, 3297.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C. ; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V. ; Mennucci, B. ; Cossi, M.; Scalmani, G. ; Rega, N. ; Petersson, G. A.; Nakatsuji, H. ; Hada, M. ; Ehara, M. ; Toyota, K. ; Fukuda, R.; Hasegawa, J.; Ishida, M; Nakajima, T.; Honda, Y. ; Kitao, O. Nakai, H.; Klene, M. ; Li, X. ; Knox, J. E.; Hratchian, H. P. ; Cross, J. B. ; Bakken, V.; Adamo, C. ; Jaramillo, J. ; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A. Gaussian 03, rev. D.01; Gaussian, Inc.: Wallingford, CT, 2004.
(12) (a) Bickelhaupt, F. M.; Baerends, E. J. Rev. Comp. Chem. 2000, 15, 1. (b) Te Velde, G.; Bickelhaupt, F. M.; Baerends, E. J.; Fonseca Guerra, C.; Van Gisbergen, J. A.; Snijders, J.; Ziegler, T. J. Comput. Chem. 2001, 22, 931.
(13) North, H.; Knizek, J.; Ponikwar, W. J. Inorg. Chem. 1999, 11, 1931.
(14) Kovács, A.; Esterhuysen, C.; Frenking, G. Chem.-Eur. J. 2005, 11, 1813.
(15) Jonas, V.; Frenking, G.; Reetz, M. T. J. Am. Chem. Soc. 1994, 116, 8741.
(16) Krapp, A.; Bickelhaupt, F. M.; Frenking, G. Chem.-Eur. J. 2006, 12, 9196.
(17) The same explanation was given for the different bond strengths of the ligands PCl_{3} and PMe_{3} in transition metal complexes. See Frenking, G.; Wichmann, K.; Fröhlich, N.; Grobe, J.; Golla, W.; Le Van, D.; Krebs, B.; Läge, M. Organometallics 2002, 21, 2921.
(18) Huber, K. P.; Herzberg, G. Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules; Van Nostrand Reinhold Co.: New York, 1979.
(19) One referee pointed out that the concept of bond order, which is connected to covalent bonding, should be fundamentally related to the orbital interaction term $\Delta E_{\text {orb }}$. The data in Figure 2 and Table 1 show that this is not the case even when values for the same type of bond are compared with each other. For example, the central $\mathrm{B} \equiv \mathrm{B}$ bond in $\mathrm{N}_{2} \mathrm{BBN}_{2}$ has a smaller $P_{\mathrm{A}-\mathrm{B}}$ value of 1.82 than in $\operatorname{OCBBCO}\left(P_{\mathrm{A}-\mathrm{B}}=1.90\right)$ but the orbital interactions for the boron-boron bond in the latter molecule are slightly weaker $\left(\Delta E_{\text {orb }}=-150.4 \mathrm{kcal} / \mathrm{mol}\right)$ than in the fomer species $\left(\Delta E_{\text {orb }}=\right.$ $-151.5 \mathrm{kcal} / \mathrm{mol}$).
(20) Ehlers, A. W.; Baerends, E. J.; Bickelhaupt, F. M.; Radius, U. Chem.-Eur. J. 1998, 4, 210.

JP902780T

[^0]: † Part of the "Walter Thiel Festschrift".

 * To whom correspondence should be addressed.

